ارزیابی عملکرد سمپاش زراعی نرخ متغیر با استفاده از شبکه های عصبی مصنوعی
نویسندگان: ثبت نشده
چکیده مقاله:
جهت ارزیابی عملکرد پاشش یک سمپاش زراعی نرخ متغیر، از روش شبکه عصبی مصنوعی استفاده شد. داده های لازم برای مدل سازی، از آزمون های مزرعه ای به دست آمد. برای مدل سازی بده خروجی افشانک ها،727 شبکه با چهار نوع مدل عصبی مصنوعی خطی، پرسپترون چندلایه، تابع پایه شعاعی و رگرسیون تعمیم یافته آزمون شدند. برای هر افشانک 45، 22 و 23 داده به ترتیب برای آموزش، اعتبارسنجی و آزمایش استفاده شد. مدل تابع پایه شعاعی با یک لایه ورودی، 4 لایه پنهان و4 لایه خروجی کمینه خطا به عنوان بهترین مدل انتخاب شد. برای سنجش توانایی مدل عصبی در پیش گویی بده افشانک ها، نتایج حاصل از این روش با مدل آماری مقایسه شد. بر اساس نتایج، میانگین مقادیرR2 افشانک ها در مدل آماری برابر با 980/0، 979/0، 981/0 و 980/0 و در مدل های عصبی مذکور به ترتیب برابر با 994/0، 988/0، 997/0 و 990/0 به دست آمد. هم چنین میانگین ضریب تغییرات با استفاده از مدل های آماری و شبکه عصبی به ترتیب برابر با 96/18 درصد و 05/19 درصد بود. نتایج نشان داد، که مدل شبکه عصبی مصنوعی در مقایسه با مدل آماری روش دقیق تری برای پیش گویی بده سمپاش بر اساس تغییرپذیری های مکانی سم در مزارع است
منابع مشابه
پایش تغییرپذیری فرآیندهای چند مشخصه وصفی و متغیر با استفاده از شبکه عصبی مصنوعی
امروزه در برخی محیطهای تولیدییا خدماتی، کیفیت محصول یا عملکرد فرآیند به وسیله ترکیبی از مشخصههای کیفی متغیر و وصفی همبسته توصیف میگردد. بر اساس آخرین اطلاعات مؤلفان، تا کنون هیچ روشی برای پایش ماتریس واریانس- کوواریانس این گونه فرآیندها ارائه نشده است. در این مقاله، یک شبکه عصبی مصنوعی برای پایش تغییرپذیری یک فرآیند چند مشخصه وصفی و متغیر ارائه شده است. شبکه ارائه شده نه تنها قادر به کشف وضع...
متن کاملارزیابی پتروفیزیکی مخزن هیدروکربوری با استفاده از داده های چاه نگاری و تکنیک شبکه عصبی مصنوعی
متن کامل
مقایسه قدرت مدل های شبکه عصبی مصنوعی و شبکه عصبی پویا در پیش بینی نرخ ارز: کاربردی از تبدیل موجک
این مطالعه تلاشی است در جهت بهکارگیری ترکیب مدل شبکهی عصبی پویا و تجزیهی موجک جهت میسر نمودن امکان انتخاب یک الگوی بهینه جهت پیشبینی متغیر مذکور میباشد. جهت تحقق این مهم، از دادههای سریزمانی ماهانهی نرخ ارز طی بازهی زمانی فروردین 1377 الی آذر 1391، که مشتمل بر 177 مشاهده بوده که از این بین، تعداد 150 مشاهده جهت مدلسازیها استفاده شده و تعداد 27 مشاهده نیز جهت شبیهسازی و یا به بیان دی...
متن کاملمدلسازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی
در این مطالعه آزمایشهای مزرعهای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنههای متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتیمتر، سرعتهای پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگینکننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکههای عصبی مدلسازی شده در این تحقیق که به منظور پیشبینی بازده کششی تراکتور مورد اس...
متن کاملتعیین ارزش داراییهای نامشهود با استفاده از شبکه عصبی مصنوعی
درک عوامل موثر بر ارزش شرکت برای سرمایهگذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایهگذاری یا اعطای تسهیلات، امری حیاتی است. از آنجایی که اقتصاد دانشمحور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر داراییهای فیزیکی به دانش نامشهود منتقل شده است. از اینرو در آینده نه چندان دور، ارزشگذاری داراییهای نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 5 شماره 3
صفحات 35- 46
تاریخ انتشار 2016-12-20
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023